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Abstract— The 3-D integration helps improve performance
and density of electronic systems. However, since electrical and
thermal performance for 3-D integration is related to each
other, their codesign is required. Machine learning, a promising
approach in artificial intelligence, has recently shown promise
for addressing engineering optimization problems. In this paper,
we apply machine learning for the optimization of 3-D inte-
grated systems where the electrical performance and thermal
performance need to be analyzed together for maximizing per-
formance. In such systems, modeling can be challenging due to
the multiscale geometries involved, which increases computation
time per iteration. In this paper, we show that machine learning
can be applied to such systems where multiple parameters can be
optimized to achieve the desired performance using the minimum
number of iterations. These results have been compared with
other promising optimization methods in this paper. The results
show that on an average, 4.4%, 31.1%, and 6.9% improvement
in temperature gradient, CPU time, and skew are possible using
machine learning, as compared with other methods.

Index Terms— 3-D IC, Bayesian optimization (BO), electrical–
thermal simulation, machine learning, temperature gradient,
thermal-induced skew.

I. INTRODUCTION

CONTINUOUS growth in operational speed and circuit
density of electronic systems has resulted in new tech-

nologies to achieve these goals. Three-dimensional integration
technique, an innovative technique in systems packaging,
provides solutions for improving performance and density
of electronic systems [1]. However, improved circuit and
power density also increases the heat flux, which can increase
temperature and cause thermal related reliability problems
[2]. Increased temperature and their gradients can degrade
electrical performance, since it can have a direct impact on
clock skew. Since electrical performance and thermal per-
formance are related through joule heating, their combined

Manuscript received July 21, 2016; revised November 14, 2016; accepted
December 17, 2016. This work was supported by the Center for Advanced
Electronics through Machine Learning.

S. J. Park was with the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332 USA. He is
now with Samsung Electronics, Co., Ltd., Hwaseong 18448, South Korea
(e-mail: sjoo@samsung.com).

M. Swaminathan is with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: madhavan@ece.gatech.edu).

B. Bae and J. Kim are with the Department of Electrical Engineer-
ing and Computer Science, Korea Advanced Institute of Science and
Technology, Daejeon 305701, South Korea (e-mail: bhbae@kaist.ac.kr;
joungho@ee.kaist.ac.kr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2017.2656843

analysis is required for accurately predicting the temperature
distribution [3]. In addition, the clock tree needs to be modeled
in the presence of the temperature distribution for estimating
clock skew [3]. Since several parameters such as physical
geometries, interface materials, fan speed, and so on have a
direct influence on the temperature profile, these parameters
need to be suitably tuned to achieve the desired electrical
performance. Hence, this translates into a multivariate system
optimization problem. In this paper, the attributes of the
problem require: 1) black box optimization since the output
function is unknown; 2) possible application to nonconvex
response surfaces, since the system behavior is unknown a
priori; and 3) minimizing iterations for reaching optima due to
the multiphysics and multiscale modeling required that causes
an increase in computational time.

Several studies have proposed statistical methods such as
worst case and Monte Carlo analyses [4] to optimize a
large number of design parameters. Due to the large number
of simulation cases and expensive computational overhead
for these methods, others have proposed approaches that
reduce the number of simulations, using design of experi-
ments (DOEs) [5]. However, the DOE approach has restric-
tions such as: 1) interactions between parameters need to be
minimal and 2) the number of levels is normally limited to
below three. Moreover, these methods can lead to quantization
error during optimization, due to their implementation at
discrete points in the problem space.

Other approaches for global optimization are also available,
as discussed in [6]. As an example, global optimization
algorithms typically require large computing resources due
to a combination of large number of data sets and compute
time for each data set. As shown in Fig. 1(a)–(d), global
optimization algorithms when applied to “peaks” function,
which is an example function for two variables in MATLAB,
required between 272–2650 function counts to converge to the
minimum value. In comparison, machine learning based on
Bayesian optimization (BO) [7] applied to the same function,
required just 100 function counts to converge to the minimum,
as shown in Fig. 1(e). Function count represents the number of
objective function evaluations during the optimization process,
where each iteration can require multiple function counts. This
was our main motivation for investigating machine learning
methods in this paper. In addition, such methods can be applied
to nonconvex, black box optimization problems as well, which
was another requirement.

Machine learning has three components, task, experience,
and performance, which consists of two phases, training,
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Fig. 1. Optimization methods applied to a predefined function. (a) Multistart (function counts = 345). (b) Global search (function counts = 273). (c) Pattern
search (function counts = 272). (d) Genetic algorithm (function counts = 2650). (e) BO (function counts = 100) [8].

Fig. 2. Concept of machine learning consists of training and evalua-
tion/execution phases [9], [10].

and evaluation/execution, as shown in Fig. 2. “Task” and
“performance” represent training and target respectively, while
“experience” is used to improve the target performance [9].

Though there are several algorithms available in the lit-
erature for machine learning, our focus in this paper is on
BO due to its capability for handling a large number of
input parameters and its quick convergence [7]. Machine
learning methods have been applied to electromagnetic prob-
lems [11], static timing analysis [12], high-speed interconnect
systems [13], and time domain performance estimation [14]
in the past. In this paper, we apply machine learning for the
optimization of 3-D ICs and systems, to minimize temperature
and temperature gradients.

For minimizing the number of training data sets required,
we chose BO with Gaussian process (GP), since GP helps
improve the performance [7]. Several machine learning meth-
ods based on support vector machine and spare-vertical link
have been discussed in the past for optimizing electrical
circuits with minimum training data [15] and for optimizing
3-D circuits [16]. However, these methods required expense
for problem-dependent hyper-parameter and complex allo-
cation problem, respectively, therefore BO method is more
efficient for optimization. In [17], a preliminary application
of machine learning for 1-D problems was discussed. In this
paper we expand [17] to include multivariable optimization
along with correlation of the solver with measurements and
convergence study.

This paper is organized as follows: Section II describes the
problem in the context of 3-D integration and discusses a test
chip for validating the solver with measurements; Section III
discusses system optimization using machine learning with
results provided in Section IV; followed by conclusions in
Section V.

Fig. 3. Configuration of a 3-D system for optimization.

II. PROBLEM DEFINITION

A. 3-D Integrated System

Our objective in this paper is to minimize the global skew
caused by temperature and temperature gradients in 3-D sys-
tems. We rely on simulated temperature profiles superimposed
on to temperature-sensitive clock tree to estimate the skew.

An example of a 3-D integrated system comprising of
stacked dies, interposer, and printed circuit board (PCB),
is shown in Fig. 3. To build the full system model of
chip/package/PCB, we rely on an iterative solver [18] based on
the finite volume method which numerically solves the coupled
thermal and electrical partial differential equations. The solver
uses a volumetric cell for discretization and incorporates the
user defined conduction and convection boundary conditions.

The solver uses a nonuniform grid and domain decompo-
sition to address the multiscale geometries and accounts for
multiple materials in the structure related to die, interposer, and
PCB by enforcing the necessary boundary conditions between
cells containing different materials properties.

We assume power maps on the chip [3] and use noncon-
formal domain decomposition and parameterized model order
reduction techniques; as described in [18]; to compute the
temperature profiles. Signal and power integrity performance,
such as skew, noise, and impedance, are then computed using
a circuit solver, which includes temperature gradients and
power delivery network response super-imposed on an H-tree
clock network containing temperature-dependent nonlinear
clock buffers and interconnect models [3]. This procedure,
as shown in Fig. 4 and discussed in detail in [3] results in
the computation of the temperature distribution across the
die along with temperature dependent skew, jitter and power
supply noise for the clock tree in the center die. In this paper,
our main focus is on optimizing the temperature distribution
on the center die and computing the resultant skew on the
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Fig. 4. Flow of electrical–thermal simulation for 3-D system design.

clock distribution network (CDN). It is important to note
that temperature gradient has a significant impact on clock
skew [3].

B. Materials and Methods

All computations in this paper are based on the electrical–
thermal solver described in [18]. To calibrate the accuracy
of the results, a custom IC was designed and a test vehicle
fabricated. The test chip contained both temperature generation
and monitoring circuits. Though the test vehicle did not
contain a 3-D stack with TSVs due to limited availability,
the authors believe that the test vehicle provides a method for
calibration and attests to the accuracy of the simulations.

On-chip heaters implemented using polysilicon resistors
were used to generate the heat while MOS diodes were used
to record the temperature. The dimension of on-chip heaters
was 100 μm × 100 μm and these heaters were implemented
on the poly-silicon layer. Sixteen pairs of heaters, temperature
sensors and MOS diodes were placed on a 4 × 4 grid on the
chip which measured 3.8 mm × 3.8 mm.

The chip consisted of six metal layers and was fabricated
using the 180-nm process. This process was used to design
and fabricate the prototype, since it was part of a low-
cost multiproject wafer. Since the objective was to validate
the models and modeling process, the 180 nm technology
node was chosen. The specifications of the CMOS process
are shown in Table I. The layout of the chip is shown
in Fig. 5(a). The fabricated chip was directly bonded to a
PCB (chip-on-board), which measured 100 mm × 100 mm,
as shown in Fig. 5(b).

C. Validation of Electrical–Thermal Solver

On-chip temperature gradients were measured using temper-
ature generating and monitoring blocks. We induced variable
current to each heater with resistor networks built on test board
by varying resistance and input voltage. To measure the local
temperature, we used temperature monitoring circuits with
diodes. Fig. 6(a) and (b) shows the measured I–V profile of
temperature monitoring circuits and the measured I–V curves
for different temperatures, respectively.

TABLE I

FABRICATION PROCESS SPECIFICATIONS

Fig. 5. (a) Chip layout. (b) Fabricated PCB and wire-bonded chip.

Fig. 6. (a) Measured I–V profile of temperature monitoring circuits.
(b) I–V profile with temperature variations.

The power consumed by each heater was calculated using
a voltage source and resistor divider resulting in a power
map as shown in Fig. 7(a). The electrical–thermal solver was
used to compute the temperature distribution on the die for
the test vehicle in Fig. 5. Since the typical heat transfer
coefficient for natural convection is around 5 W/(m2 · K) [19],
a heat transfer coefficient of 4.0 W/(m2 · K) was used as the
convection boundary condition for analysis, which accounts
for any radiation effects as well. Fig. 7(b) and (c) shows the
simulated and measured temperature distribution for the power
map used in Fig. 7(a). The measured results are well correlated
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Fig. 7. (a) Power maps used for simulation and measurement. (b) Measured
temperature profiles. (c) Simulated temperature profiles.

with the electrical–thermal simulations. From Fig. 7, it can be
seen that the correlation is good for minimum and maximum
temperatures for the three power maps (11.9%–15.0% and
2.2%–3.4% error in simulations) while the error is larger for
the temperature gradients due to the smaller values involved.
Nevertheless, these correlations provide a reasonable degree
of confidence in the simulated temperatures, since there is
some inaccuracy in the position of the heaters and monitoring
circuits due to the 4 × 4 grid used for the chip, as opposed to
a much finer nonuniform grid used in the simulations.

III. SYSTEM OPTIMIZATION

In this section, we briefly discuss the BO using GP algo-
rithm in the context of 3-D system optimization. We also
provide some basic theory and define the system parameters
used as part of the optimization process.

A. Bayes’ Theorem

BO originated from a well-known equation in proba-
bility theory and statistics, called Bayes’ theorem. Bayes’
theorem [20] can be applied to machine learning using

P(h | D) = P (D | h) P(h)

P(D)
. (1)

In (1) “P(D)” and “P(h)” are the probabilities of observing
“D” and “h,” respectively. They are referred to as the prior
over data “D” and hypothesis “h,” respectively. “P(D|h)”
is the probability of observing data “D” given a hypothesis
“h” and is referred to as the likelihood while P(h|D) is the
probability of hypothesis “h” given data “D” also called the
posterior.

Equation (1) interprets Bayes’ rule regarding possibilities of
multiple events, before (prior to) and after (posterior to) event

Fig. 8. Black box function with multivariable for 3-D system design.

which can be rewritten in the form

P(h | D) ∝ P (D | h) P(h)

P(D)
(2)

where, the proportionality symbol indicates that if “h” varies
but keeping “D” fixed, the left-hand side is equal to a constant
times the right-hand side. In words, posterior is proportional
to prior times likelihood: determined by the Bayes factor [20].
This forms the framework for BO used in this paper.

B. Black Box Function

For the 3-D system in Fig. 3, the input parameters “x” to
be optimized to achieve a target output “ f (x)” are shown in
Fig. 8. The black box function f (x) is obtained using the
electrical–thermal solver described earlier. Based on sensi-
tivity analysis, we picked five input variables for optimiza-
tion namely, heat transfer coefficient (determined by the air
flow rate), thermal conductivity of thermal interface mater-
ial (TIM), TIM thickness, PCB and thermal conductivity of
under-fill (UF) material, while the target parameters chosen
were maximum temperature and temperature gradient. The
improvement in clock skew resulting from the temperature
distribution was used as a metric for the optimization.

The target parameters namely, maximum temperature and
temperature gradient were combined to form the function f (x)
using weights for each of the parameters, as explained in a
later section.

C. Bayesian Optimization With Gaussian Process

In Bayesian statistics, we model our uncertainty with a
prior probability distribution. In other words, we estimate
the distribution and use this information to decide the point
evaluated next, which is a key point of BO that differentiates
it from other methods.

For GP priors, the model uses a joint Gaussian with the
entire set of available observation points. In this optimization,
the function “ f ” is defined as a GP prior with mean function
“m” and covariance function “k.” Based on prior observation
points “M” for the variable “x ,” the prior function f (x1:M )
for each variable is defined as a GP given by

f (x1:M) = N(μ(x1:M), k) (3)

where x1:M represent the “M” observation points for each
input variable, μ (x1:M ) is the corresponding mean vector
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Fig. 9. Proposed flow for electrical–thermal simulation using BO. (a) Electrical–thermal simulation. (b) BO.

and k (also called the kernel) is the corresponding covariance
matrix given by [21]

μ (x1:M) = [μ (x1)μ (x2) · · · μ (xM)]T (4)

K (x1:M) =
⎡
⎢⎣

k (x1, x1) · · · k (x1, xM)
...

. . .
...

k (xM, x1) · · · k (xM, xM)

⎤
⎥⎦ (5)

where the covariance is defined by

k(xi , x j ) = exp
(

−1
2
‖x j − x i‖2

)
. (6)

To predict f (xM+1) at the next data point, we consider
the joint distribution over f of the old data points and new
data point, as shown in (7). The optimization problem now
relates to maximizing (or minimizing) f (x) subject to x where
f (xM+1) can be a nonconvex black-box function defined by
[

f(x1:M)
f (x M+1)

]
∼N

([
m(x1:M)
m(x M+1)

]
,

[
K k
kT k(x M+1, x M+1)

])

(7)

where K is the kernel matrix and k is the kernel function given
by (5) and (6).

From [21], the mean and variance of f (xM+1) can be
computed as

μ (xM+1) = kTK−1f1:M (8)

σ 2(xM+1) = k (x M+1, x M+1) − kTK−1k. (9)

Such an approach can be extended to N independent input
variables, where in this paper we use N <= 5.

This approach provides a posterior distribution of the
unknown function. We can choose the next value of the
function representing the targeted values by either maximizing
or minimizing an acquisition function (explained later).

The typical flow of BO using GP [22] is as follows.

1) Choose initial points of N input variables x and evaluate
f(x) including error (with regard to the target value
desired).

2) While [f(x)−t ar get] ≤ er ror, calculate Bayesian pos-
terior distribution on “f” from the points observed.

3) Using the prior observation points and acquisition func-
tion determine the point to evaluate next.

4) Stop if the error criterion is met, and report the point
with the best value.

This approach is based on the infinite-metric GP optimiza-
tion algorithm presented in [23].

Based on BO with GP, the flow for system optimization
is as shown in Fig. 9 where the electrical–thermal simulator
is used to compute the black box function. In the flowchart,
acquisition functions are used to choose the posterior. In gen-
eral, three acquisition functions have been widely used in
the open literature for GP based optimization, namely [7]:
probability of improvement (PI), expected improvement (EI),
and upper/lower confidence bound (UCB/LCB) [24]–[26]. The
goals of the first two strategies are to maximize the PI and
the EI of the current value, respectively. The third strategy is
targeted toward exploiting UCBs/LCBs with high probability
using acquisition functions that minimize regret [7]. In this
paper, LCB is used, described by

xM+1 = arg min
i

[μ(xi ) − κσ (xi )] (10)

where κ ≥ 0 and κ = (2 log π2x2/12ν)1/2, (where ν equals
0.05), and μ(xi ) and σ(xi ) are determined from (8) and (9)
for each input parameter. It is important to note that the
selection of the next sample does not require the computation
of f(x), since (10) is computed only based on the previous
results, which minimizes computational time. Since the entire
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Fig. 10. Distribution plots of (a) function, (b) posterior mean, (c) posterior
variance, and (d) LCB acquisition function for optimization of the 3-D system.

procedure minimizes the number of points at which f(x) is
computed [21], the computational time required for optimiza-
tion can be reduced significantly. Unlike most optimization
techniques, this approach provides a posterior distribution of
the unknown function and hence the search involves determin-
ing the function (rather than the output itself) that is closer to
the targeted goal.

As an example for choosing the next value, Fig. 10 shows
the distribution of the function with two random variables
X1 and X2, along with the posterior mean and variance across
the input parameter space, the distribution of the acquisition
function defined using the LCB and selection of the next point.
The minimum of the acquisition function is chosen as the next
point in the input parameter space, shown using a triangle
marker in Fig. 10. In the figure, X1 represents the heat transfer
coefficient of the air flow in W/(m2 · K) and X2 represents
thermal conductivity of the TIM material in W/(m · K) for
the 3-D system being optimized, with the target function f(x)
described in a later section.

IV. RESULTS

A. System Details

A 3-D system for optimization comprises of stacked dies,
interposer, and PCB, as shown in Fig. 3 of Section II. We use
multiple power maps as described in [17] to simulate the
3-D structure where the power maps are randomly distributed
on the top and bottom die. The total power for the three
dies was 50 W with 20 W for the bottom and the top die
respectively, and 10 W for the center die. The center die
incorporates the CDN, which is used to compute the skew.
The clock buffers and interconnects used for the CDN were
based on the 45-nm process [27], as described in [3]. The three
power maps were used to reflect the three different temperature
distributions. Fig. 11 shows the power maps used.

B. Input Parameters

As discussed earlier, five input parameters were selected
for optimization with details provided in Table II, along with

Fig. 11. Power maps used for optimization.

TABLE II

INPUT VARIABLES FOR OPTIMIZATION

Fig. 12. Response surface with a target value.

their respective range. These parameters are air flow velocity
or heat transfer coefficient, thermal conductivity of the TIM,
thermal conductivity of UF material, thermal conductivity of
PCB, and thickness of TIM. The range for these parameters
were chosen based on manufacturability.

C. Multiobject Optimization Using Target Function

There are two target parameters that are important for
optimization namely, maximum temperature and temperature
gradient on the center die. Limiting the maximum temperature
is important to maximize system reliability while minimizing
the temperature gradient is required to minimize clock skew.
Both these parameters vary with the input parameters.

As an example, the response surface of the function f
in (11) is shown as a function of two parameters, namely
TIM thickness and thermal conductivity in Fig. 12. The figure
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Fig. 13. Optimization results for heat transfer coefficient (X1) and
TIM thermal conductivity (X2) showing convergence; TIM thickness (X3)
is not plotted (N = 3).

shows a surface where a combination of input parameters
leads to a minima, where the minima here corresponds to a
temperature and temperature gradient less than 120 °C and
25 °C, respectively. Our goal in this paper is to achieve the
target value for the maximum temperature and temperature
gradient by tuning the input parameters through optimization.
Our target function is defined as

f (y1, y2) =
2∑

i=1

wi × yi (11)

where wi and yi are the weights and the selected outputs,
respectively. In (11)

y1 = maximum temperature TMAX

and

y2 = temperature gradient TGRAD.

In this paper, we used weights of w1 = 0.34 and w2 = 4.5
in (11) to define the target function. This was determined based
on the importance of reducing the clock skew as opposed
to minimizing the maximum temperature, though both are
important to ensure a reliable system.

D. Optimization With Multiple Input Parameters

The target parameters defined in Table II were used along
with the target function in (11) and three input parameters
heat transfer coefficient, TIM thickness and TIM thermal
conductivity to perform optimization using power map I in
Fig. 11. Fig. 13 and Table III show the optimization results.
A total of 100 iterations were used. In Fig. 13, the sampling
points used for each iteration are shown for the four cases
evaluated in Table III (plotted only as a function of input
variables X1 and X2).

For Case (d), the sampled points are shown as a function
of three input parameters in Fig. 14(a). The optimization
algorithm “Starts” from an initial value, which represents the
median of each parameter, and converges to the optimized

TABLE III

OPTIMIZATION RESULTS WITH VARIOUS TARGET VALUES

Fig. 14. Optimization results with target value of TMAX: 120.0 and
TGRAD: 25.0. (a) Found Xs and (b) temperature.

Fig. 15. Optimization with power map II. (a) Iterations shown as a function
of three parameters only. (b) Temperature distribution.

value (indicated as “End”) in the figure. As can be noted from
Fig. 14, the sampling is nonuniform. The maximum temper-
ature and temperature gradient before and after optimization
on the center die containing the CDN are shown in Fig. 14(b).
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Fig. 16. Optimization with power map III. (a) Iterations shown as a function
of three parameters only. (b) Temperature distribution.

Fig. 17. Comparison of convergence between pattern search, nonlinear solver,
and BO (a) temperature gradient and (b) thermal skew.

To verify the efficiency of the optimization procedure, a
case study was performed with various power maps shown
in Fig. 11 [17] with more input variables (N = 5) and with
an iteration number of 200. Figs. 15 and 16 show the results
with power map II and power map III, respectively. The target
values used for TMAX and TGRAD were 110 °C and 11 °C
for power map II and 110 °C and 9 °C for power map III,
respectively. Optimization results show convergence to the
target value in Figs. 15 and 16. The temperature distribution
before and after optimization are also shown in these figures.
Before optimization, power map II and power map III resulted
in a clock skew of 51.8 and 39.2 ps, respectively. After
optimization, power map II and power map III resulted in a

TABLE IV

OPTIMIZATION RESULTS WITH VARIOUS POWER MAPS

TABLE V

COMPARISON OF OPTIMIZATION PERFORMANCE
AFTER 100 FUNCTION COUNTS

clock skew of 44.2 and 33.0 ps, respectively. The optimization
results are shown in Table IV.

E. Comparison

To compare the optimization performance with existing
methods and algorithms, the number of function counts and
optimized values were compared. Fig. 17 compares the opti-
mization results, for temperature gradient and the resulting
skew for power map I and five input parameters, using BO,
“pattern search” (available in MATLAB) and “fmincon,” a
constrained nonlinear minimization solver (also available in
MATLAB). We chose the “pattern search” and “fmincon”
algorithms for comparison since they led to fewer function
counts as compared with other methods described in Fig. 1.
After 100 function counts BO produced temperature gradient
and thermal skew of 23.8 °C and 88.0 ps respectively as
compared with 24.5 °C and 96.2 ps using “pattern search”
and 25.2 °C and 92.0 ps using “fmincon,” as illustrated in
Fig. 17. Fig. 17 also shows a faster convergence rate for BO
as compared with “pattern search” and “fmincon” algorithms,
especially during the early period.

A comparison of the optimization results including temper-
ature gradient, normalized CPU time for temperature gradient,
and optimized thermal skew is shown in Table V.

V. CONCLUSION

This paper presented machine learning combined with BO,
for optimizing the electrical–thermal performance of 3-D
integrated circuits and systems. Optimization results and com-
parison to other techniques show several advantages with
the approach proposed. Our conclusion is that the method
described is suitable for optimizing system-level electrical–
thermal cosimulation problems, (which often require long
simulation time and a large number of simulation cases), is
accurate and requires lower computational cost (−31.1% as
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CPU time) as compared with other conventional design opti-
mization methods. This approach also showed the capabil-
ity of handling a large number of input parameters with
fast convergence and flexibility. The optimization approach
using machine learning methods can become useful when
system complexity increases along with many input parame-
ters that need to be optimized simultaneously, especially for
3-D applications. Since many BO algorithms have been pre-
sented in the open literature, we believe that the efficiency
of the optimization described in this paper can be increased
further.
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